intel.

Ion

The Next Generat

NWChem

T 5 Q
S5
C
memJ
£ G E
o N 5
T ca
= 2 E
&5 3

o Y
S o
©
|
(O
o

OOy 1§

)
I

R\
R Hﬁf//i////f////////////
0.— Oy Oy HU /5////////// N

\AOvGy 1OV OON

C:CCCC: VOVWO

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products.

Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, and Cilk are trademarks of
Intel Corporation in the U.S. and other countries.
*QOther names and brands may be claimed as the property of others.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

Intel Labs — Systems and Software Research

Extreme Scalability Group Disclaimer

I work in Intel Labs and therefore don't
know anything about Intel products.

« I work for Intel, but I am not an official
spokesman for Intel. Hence anything I say
are my words, not Intel's. Furthermore, I
do not speak for my collaborators, whether
they be inside or outside Intel.

* You may or may not be able to reproduce
any performance numbers I report.

- Hanlon’s Razor.

Intel Labs — Systems and Software Research

e
Zorie e

Atomistic simulation in chemistry

1. Classical molecular dynamics (MD) with
empirical potentials

2. Quantum molecular dynamics based upon
density-function theory (DFT)

3. Quantum chemistry with wavefunctions
e.g. perturbation theory (PT), coupled-
cluster (CC) or guantum monte carlo

(QMCQ).

Intel Labs — Systems and Software Research

'''

Classical molecular dynamics

R e e L R

Solves Newton’s
equations of motion
with empirical terms
and classical
electrostatics.

Size: K to M of atoms

Time: nanoseconds
per day

Scaling: O(N_i;me)
Math: N-body

Quantum molecular dynamics

« Forces obtained from
solving an
approximate single-
particle Schrodinger
equation.

« Size: hundreds of
atoms

- Time: picoseconds per
day

« Scaling: O(N.?)
« Math: 3D FFT, dense
linear algebra.

Wavefunction theory

* Properties obtained from
solving an approximate
many-particle Schrodinger
equation, truncated using
perturbation theory or
clusters.

» Size: dozens of atoms

- Time: femtoseconds per
day (almost useless)

« Scaling: O(Ny&), x=5-7
« Math: Tensor contractions.

NWChem*

Designed from the ground-up at the dawn of MPP/
cluster revolution; focused on true HPC systems.

Developed at the EMSL at PNNL

- EMSL: Environmental Molecular Sciences Laboratory
« PNNL: Pacific Northwest National Laboratory

URL: http://www.nwchem-sw.org
Open-source Apache*-like (ECL 2.0) license.

Portable to essentially every machine on earth,
with some effort (more on this later).

- Supports essentially all of the common methods:
DFT, QM/MM, AIMD, CC, MP2, MCSCEF, etc.

Intel Labs — Systems and Software Research

*Other brands and names are the property of their respective owners. =

Collaborators

”"/ Uy ¢

1 ;
\ i | / : \ \
\ / \“ \
/
/ 17777\ \\|
/7t Q\

/I

Karol Kowalski = NWChem Team Lead, PNNL
Edo Apra — Senior NWChem Developer, PNNL
Michael Klemm - Senior Appl. Engineer, Intel SSG
« Jim Dinan - HPC Network Arch., Intel DCG
Pavan Balaji - MPICH Team Lead, Argonne

Intel Labs — Systems and Software Research

*QOther brands and names are the property of their respective owna'. -

Coupled Cluster

« Explicit electron correlation using quantum many-
body perspective (see also perturbation theory).

« Size-extensive: can be used for large systems.

« Truncated in orders CCSD, CCSDT, CCSDTQ,...

« CCSD(T) most accurate per compute cost,
requiring O(n...*N®+N’) flops and O(N*) storage.

- All CC methods are cast in terms of a variety of
tensor contractions; these are often mapped to
DGEMM for performance.

b,a,c a,b,iy ,d
I =Dy Vi)

Intel Labs — Systems and Software Research

. /2
Tensor Contractions bj
Ij ia

Iy] Tef .
Ik/ < Vef Tk/ Jblda

(@)) e S

(Kl) (ef) " (KI) ()
b« ybTC “}’3

T T T

T

Im Tea
Vbe Tm'
Vbe,im ij,ea
Wbi,me Ume,ja
me | |ja
Wbi Ume

(me) , (a)
Wibiy " Y(me)
WY Uz

The V->W, T->U and J->| transpositions require O(mn+mk+kn)
mops, as compared to the O(mnk) flop cost of DGEMM, which
also requires O(mn+mk+kn) mops. However, the transpositions

are necessarily strided access.

Intel Labs — Systems and Software Research

—_—
—_—

'''''''''''

DGEMM Consider Harmful

T« DIV,
TCE uses tiling to decompose data and achieve
load-balance. In CCSD(T), the tilesize T is 16-24.
Here (m,n,k)=(T3,T3,T), which means O(T®) mops
and O(T’) flops.

Compare T/4 flop/mop to misses associated with
strided memory access.

There are 18+9 different permutation variants of
the above, so persistent redistribution is
impossible.

e s

Intel Labs — Systems and Software Research

DGEMM Consider Harmful

NERSC Edison
T=16 using 48 threads (2x12x2)

DGER(T4,T2): 1.1 GF/s
DGEMM(T3,T3,T): 34.1 GF/s
DGEMM(T3,T3,T2+): 435.3 GF/s (peak: 460 GF/s)

Loops (DGER-equiv.): 3.97-4.80 GF/s
Loops (DGEMM-equiv.): 55.2-71.7 GF/s

O(T®) and O(T’) contractions take the same time., _

Intel Labs — Systems and Software Research : /

—_—
—_—

DGEMM Consider Harmful

There is nothing wrong with Intel(R) MKL(TM) - all
BLAS libraries have issues with small-k DGEMM,
and small (m,n,k)-DGEMM in general.

Even if DGEMM is perfect, loops are still faster
because they do half the memory access.

The ideal solution is a framework for generating
DGEMM-quality tensor contractions for based upon
known tensor layouts and dimensions. Until then,
the Intel(R) Fortran compiler will have to suffice ©

Intel Labs — Systems and Software Research

Example: NWChem Hotspots

- NWChem hotspot profile

M Basic Hotspots Hotspots by CPU Usage Viewpo ot s ool
Communication

(benchmark not ideal
Grouping: |Function/CaIl Stack S| []| [

& Analysis Target Analysis Type | | B8 Collection Log| | ¥ Summary

- (o)
CPU Time by Utili...» ¥ B overhead az

@idie @Poor QOk @ide SRR Total of 38% of time

Pcomex_make_progress | 52.0% (NN 0.250s nwchem spentinsd_t dX Y
vsd_t_d2_2 4.2% n nwchem S
sd_t_d2_8 4.2% .~ 0s|nwchem 0x16a272!

vsd_t_d2_9 4.2% 0s nw~ | 0x16a2e3i
ysd_t_d2_5 4.2% "~ hwchem 0x16ala4t
»sd_t_d2_3 4.1% 0s 0x16a3aai

»sd_t_d2_6 4.1% .~ Os|nwchem 0x16a345!
Csdrdn | 3 ~ osnwchem |oxacadn
1.2%] 0.030s nwchem 0x29565a

Y Selected 18 row(s): 38.0% 0s
< T >

Intel Labs — Systems and Software Research

*Other brands and names are the property of their respective owne S —

™

Function / Call Stack

Example: NWChem Hotspots

« Call-tree analysis shows relationship of hotspots
% Basic Hotspots Hotspots by CPU Usage viewpoint (change

@ Analysis Target | | * Analysis Type '

Collection Log

i Summary

& Bottom-up

CPU Time by Utili + ¥ B overhead and

Grouping:] Function / Call Stack
Function / Call Stack
([Idle @ Poor [J
Pcomex_make nroaress | 52.0%
vsd t_d2 2 4.2% g
~ ccsd_t_doubles_|_2¢ 4.2% [}
-sd_t d | 42%
~ ccsd_t_doubles_|_2¢ 4.2% [
vsd_t d2 9 4.2% [}
~ ccsd_t_doubles_|_2¢ 4.2%[)
Psd t d2_5 4.2% [}
Psd t d2_3 4.1% [}
Psd t d2_ 6 4.1% [}
Psd t d2.1 3.1%)
P Selected1 row(s): -
<] DA
Intel Labs — Systems and Softwar

*QOther brands and names are the property of their respective owners:

Function Stack

Poor [JOk [l |deal @ Over 0 Idle
vcesd_t_doubles_|_2 1333.239s [
Pget_hash_block_i 335.529s (D
vget_hash_block 289.569s [
vget_block 289.569s [
Pga_get_ 289.559s (D
Putil_wallsec 0.010s|
sd_t d2 2 92.330s [
sd_t d2 8 91.870s [l
sd_t d2 9 91.570s [}
sd_t d2_5 90.490s [
sd_t d2 3 89.930s [
sd_t d2 6 88.020s [l
Selected 1 row(s): 1333.239s
< [R] B i |
- B N : =% e

Example: Loop Analysis

Intel Labs — Systems and Software R¥search

All kernels expose
the same structure

7 perfectly nested
loops

Trip count per loop
is equal to “tile
size” (20-30)
Naive per-kernel
solution is obvious

subroutine sd_t di1 1(h3d,h2d,hld,p6d,p5d, pdd,

1 h7d,triplesx,t2sub,v2sub)

implicit none

integer h3d,h2d,hld,péd, p5d,pa4d,h7d offload

integer h3,h2,h1,p6,p5,p4,h7

double precision triplesx(h3d,h2d,hld,p6d,p5d,pad)

double precision t2sub(h7d,p4d,p5d,hld)

double precision v2sub(h3d,h2d,p6d,h7d)

do p4=1,p4ad . :

0o pEel 50 multi-threading

do p6=1,p6d

do hl=1,h1d

do h2=1,h2d

do h3=1,h3d

do h7=1,h7d
triplesx(h3,h2,h1,p6,p5,pd4)=triplesx(h3,h2,h1,p6,p5,ps)

1 - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7)

enddo SIMD

enddo

enddo

enddo

enddo

enddo

enddo

Issues w/ Naive Offload Solution

subroutine sd_t_di_1(h3d,h2d,hid,p6d,p5d,pad,
1 h7d,triplesx,t2sub,v2sub)
implicit none

integer h3d,h2d,hild,p6d,p5d,p4d,h7d

integer h3,h2,h1,p6,p5,p4,h7

double precision triplesx(h3d,h2d,hld,péd,p5d,p4d)

o

O1Tload |ng Inaiviaua double precision t2sub(h7d,p4d,p5d,hld)
: double precision v2sub(h3d,h2d,p6d,h7d)
kernels reqUIres GBS Of cdir$ offload target(mic) in(t2sub:length(h7d*p4d*p5d*hid))
EBERERR A 1 in(v2sub: length(h3d*h2d*p6d*h7d)) offload
1.9 GB fﬂ d) 2 inout(triplesx:length(h3d*h2d*hid*p6d*p5d*p4ad))
- er orrioa I$omp parallel do . .
(P do pa=1,pad multi-threading
do p5=1,p5d
do p6=1,p6d
Outer loop does not do hi=1.hid
expose enough parallelism do h2=1,h2d
do h3=1,h3d
(20-30 threads) do h7=1,h7d
triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,ps)
1 - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7) SIMD
Vectorization potential too e
low (about 80%) enddo
enddo
enddo
enddo
enddo
I$omp end parallel do
end

Intel Labs — Systems and Software Research

Optimization of Data Transfers

« Use call-tree analysis to find common anchor for hotspots

« Hoist data transfers up as high as possible
+ Make offload regions as large as possible

cdir$ offload_transfer target(mic) nocopy(triplesx:length(triplesx_1) ALLOC) data env
cdir$ offload_transfer target(mic) nocopy(t2sub:length(t2sub_1) ALLOC) -
cdir$ offload_transfer target(mic) nocopy(v2sub:length(v2sub_1) ALLOC)
cdir$ offload target(mic) nocopy(triplesx:length(@) REUSE)
call zero_triplesx(triplesx)
do ...
if (...)
cdir$ offload target(mic) in(triplesx:length(@),REUSE)
1 in(t2sub:length(2sub_1),REUSE) ()ffl()fﬁ(j
3 in(v2sub:length(v2sub),REUSE)
2 in(h3d,h2d,hid, péd, p5d,pad,h7d)
call sd_t_di_1(h3d,h2d,hid,p6d,p5d,pldd,h7,triplesx,t2sub,v2sub)
endif

C sd_t d1_2 until sd_t _di1 9
enddo
C Similar structure for sd_t _d2_1 until sd_t_d2 9

cdir$ offload_transfer target(mic) out(triplesx:length(triplesx_1) REUSE)

Intel Labs — Systems and Software Research

Kernel Optimizations

subroutine sd_t_di_1(h3d,h2d,hid,p6d,p5d,pad,
1 h7d,triplesx,t2sub,v2sub)
implicit none
integer h3d,h2d,hild,p6d,p5d,p4d,h7d
Outer loop does not integer h3,h2,h1,p6,pS,pd,h7

H double precision triplesx(h3d,h2d,hld,péd,p5d,p4d)
expose enough parallelism P P
p g p double precision t2sub(h7d,p4d,p5d,hld)

(20_30 threads) double precision v2sub(h3d,h2d,p6d,h7d)
zgrallel do collapse(3) mUIt|'thread|ng

p4=1,p4d
do p5=1,p5d
do p6=1,p6d
do h1l=1,h1d
do h2=1,h2d
Use collapse clause to do h3=1,h3d

2 g do h7=1,h7d
Increase para”ellsm by 1-2 triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,ps)

orders of magnitude. - t2sub(h7,p4,p5,h1)*v2sub(h3,h2,p6,h7)
enddo
enddo
enddo
enddo
enddo
enddo
enddo

I$omp end parallel do
end

Intel Labs — Systems and Software Research

Kernel Optimizations, Part 2

subroutine sd_t_di_1(h3d,h2d,hid,p6d,p5d,pad,

1 h7d,triplesx,t2sub,v2sub)
H implicit none
y Loop Orderlng nOt integer h3d,h2d,hild,p6d,p5d,p4d,h7d
1 integer h3,h2,h1,p6,p5,p4,h7
Optlmal for SIMD double precision triplesx(h3d,h2d,hld,péd,p5d,p4d)
EE)(EE(:L]t'()r] double precision t2sub(h7d,p4d,p5d,hld)
double precision v2sub(h3d,h2d,p6d,h7d)
* Too low trip count ~ tfom paraliel do colizpse(3) multi-threading
for inner loop do ps=1,psd
. do p6=1,p6d
- Index analysis shows do hi=t,hic
o =4,
that loops can be <do =1, e
do h7=1,h7d
FEE()I’(jGEI’EE(j triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,p4d)
1 - t2sub(h7,p4,p5,h1l)*v2sub(h3,h2,p6,h7)
. dd
- Swap h7 and h2 again enddo
enddo
enddo
enddo
enddo
I$omp end parallel do
end

Intel Labs — Systems and Software Research

Kernel Optimizations, Part 2

Loop ordering not
optimal for SIMD
execution

« Too low trip count
for inner loop
Index analysis shows
that loops can be
reordered
« Swap h7 and h3
« Swap h7 and h2 again

Loops h2 and h3 can
be collapsed

Intel Labs — Systems and Software Research

1$omp

1$omp

—_—

subroutine sd_t_di_1(h3d,h2d,hid,p6d,p5d,pad,
1 h7d,triplesx,t2sub,v2sub)
implicit none
integer h3d,h2d,hild,p6d,p5d,p4d,h7d
integer h3,h2,h1,p6,p5,p4,h7
double precision triplesx(h3d,h2d,hld,péd,p5d,p4d)
double precision t2sub(h7d,p4d,p5d,hld)
double precision v2sub(h3d,h2d,p6d,h7d)
parallel do collapse(3)
do p4=1,p4ad
do p5=1,p5d
do p6=1,p6d
do h1=1,h1d
do h7=1,h7d
do h2=1,h2d
do h3=1,h3d
triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,p4)
1 - t2sub(h7,p4,p5,h1l)*v2sub(h3,h2,p6,h7)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
end parallel do
end

multi-threading

Kernel Optimizations, Part 2

Loop ordering not
optimal for SIMD
execution

« Too low trip count
for inner loop
Index analysis shows
that loops can be
reordered
« Swap h7 and h3
« Swap h7 and h2 again

Loops h2 and h3 can
be collapsed

Intel Labs — Systems and Software Research

1$omp

1$omp

—_—

subroutine sd_t_di_1(h3d,h2d,hid,p6d,p5d,pad,
1 h7d,triplesx,t2sub,v2sub)
implicit none
integer h3d,h2d,hild,p6d,p5d,p4d,h7d
integer h3,h2,h1,p6,p5,p4,h7
double precision triplesx(h3d,h2d,hld,péd,p5d,p4d)
double precision t2sub(h7d,p4d,p5d,hld)
double precision v2sub(h3d,h2d,p6d,h7d)
parallel do collapse(3)
do p4=1,p4ad
do p5=1,p5d
do p6=1,p6d
do h1=1,h1d
do h7=1,h7d
do h2=1,h2d
do h3=1,h3d
triplesx(h3,h2,h1,p6,p5,p4)=triplesx(h3,h2,h1,p6,p5,p4s)
1 - t2sub(h7,p4,p5,hl)*v2sub(h3,h2,p6,h7)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
end parallel do
end

multi-threading

Kernel Optimizations, Part 2

subroutine sd_t_di_1(h3d,h2d,hid,p6d,p5d,pad,

1 h7d,triplesx,t2sub,v2sub)
H implicit none
y Loop Orderlng nOt integer h3d,h2d,hild,p6d,p5d,p4d,h7d
1 integer h3,h2,h1,p6,p5,p4,h7
Optlmal for SIMD double precision triplesx(h3d*h2d,hld,péd,p5d,p4d)
EE)(EE(:L]t'()r] double precision t2sub(h7d,p4d,p5d,hld)
double precision v2sub(h3d*h2d,p6d,h7d)
- Too low trip count D e g P multi-threading
for inner loop do ps=1,psd
. do p6=1,p6d
- Index analysis shows do hi-L, hid
o =4,
that loops can be do h2h3-1,h2d*h3d
triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,hl1,p6,p5,p4s)
reordered 1 - t2sub(h7,p4,p5,h1)*v2sub(h2h3,p6,h7) SIMD
dd
- Swap h7 and h3 —
- Swap h7 and h2 again eneee
enddo
enddo
enddo
* LOOpS hz and h3 can I$omp end parallel do
be collapsed end

Intel Labs — Systems and Software Research

_—

Kernel Optimizations, Multi-versioning

subroutine sd_t_d1_1(h3d,h2d,h1d,péd,p5d,pad, [continued from left column
1 h7d,triplesx,t2sub,v2sub) else
implicit none I$omp parallel do collapse(3)
integer h3d,h2d,hid,p6d,p5d,padd,h7d do p4=1,p4ad
integer h3,h2,h1,p6,p5,p4,h7 do p5=1,p5d
integer rmndr do p6=1,p6d
double precision triplesx(h3d*h2d,hid,p6d,p5d,p4d) do hl=1,hld
double precision t2sub(h7d,p4d,p5d,hid) do h7=1,h7d
double precision v2sub(h3d*h2d,p6d,h7d) do h2h3=1,h2d*h3d
rmndr = mod(h3d,8) + mod(h2d,8) + mod(hld,8) + triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,h1,p6,p5,ps)
1 mod(p6d,8) + mod(p5d,8) + mod(p4d,8) + 1 - t2sub(h7,p4,p5,h1)*v2sub(h2h3,p6,h7)
2 mod(h7d, 8) enddo
if (rmndr.eq.@) then enddo
I$omp parallel do collapse(3) enddo
do p4=1,pad enddo
do p5=1,p5d enddo
do p6=1,p6d enddo
do hi=1,h1d enddo
do h7=1,h7d I$omp end parallel do
ldec$ vector aligned endif
do h2h3=1,h2d*h3d end
triplesx(h2h3,h1,p6,p5,p4)=triplesx(h2h3,h1,p6,p5,ps)
1 - t2sub(h7,p4,p5,h1l)*v2sub(h2h3,p6,h7)
enddo
enddo
enddo
enddo
enddo
enddo

I$omp end parallel do

Intel Labs — Systems and Software Research

Device Partitioning

« Host executes several MPI ranks
« Utilize coprocessor from several host processes concurrently
« Utilize host CPUs for increased performance

 Partition coprocessors through OpenMP* runtime
+ Less threading overhead, better overall system utilization
« Rank 0: OFFLOAD_DEVICES=0 KMP_PLACE_THREADS=30c,4t,00
« Rank 1: OFFLOAD_DEVICES=0 KMP_PLACE_THREADS=30c,4t,300
« Rank 4: OFFLOAD_DEVICES=1 KMP_PLACE_THREADS=30c,4t,00
« Rank 5: OFFLOAD_DEVICES=1 KMP_PLACE_THREADS=30c,4t,300

Socket 0

Intel Labs — Systems and Software Research

ey
*Other brands and names are the property of their respective owners. ——

Performance Results

number of CPU threads
512 1040 2080 3680 5760 7360
| | | |
16000 |~ —
8000 —

m = _
T
c
o SS
8 4000 S~ —
L W
g el T
= S
= | -
S 20001 e~ Xeon & Xeon Phi
— | 9= = Xeon only
B- -E Xeon Phi only
1000 [
20 | | | |
:?840 7800 15600 27600 43200 55200

number of Xeon Phi threads

Performance tests are measured using specific computer systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary.
You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined
with other products. System configuration: Atipa Visione vf442 server with two Intel Xeon E5-2670 8-core processors at 2.6 GHz (128 GB DDR3 with 1333 MHz, Scientific Linux release
6.5) and Intel C600 IOH, two Intel Xeon Phi coprocessors 5110P (GDDR5 with 3.6 GT/sec, driver v3.1.2-1, flash image/micro OS 2.1.02.0390, Intel Composer XE 14.0.1.106). Benchmark 7

perturbative triples correction to the CCSD(T) correlation energy of the 1,3,4,5-tetrasilylimidazol-2-ylidene molecule (formula Si,C;N,H,,) in its triplet state.

Intel Labs — Systems and Software Research

*Other brands and names are the property of their respective owners.

Analysis

Profiling to identify optimization and offload
opportunities is ubiquitous.

Kernel tuning involved:

1. Exposing fine-grain (loop) parallelism and OpenMP*,
2. Optimizing memory access and exposing SIMD.

3. Tweaking to deal with SIMD constraints.
4

Offloading kernels and partitioning resources.

The last item is merely coprocessor-specific. The only
platform-specific bits pertain to SIMD width and
alignment restrictions.

On the other hand, CUDA* requires >6500 lines of code
that only runs on one platform.

Intel Labs — Systems and Software Research

*Other brands and names are the property of their respective owners.

....

o

On the subject of open standards...

« Porting ARMCI to new platforms is the
overwhelming portability bottleneck for NWChem.

* Vendor-specific network APIs are not always
supported and can be moving targets for ARMCI
developers.

- MPI-3 is a popular, portable interface for HPC
networks. Well over 90% of the machines on the
Top500 support it.

« A native ARMCI port is not available on the #1
machine in the world but MPI-3 is (MPICH-GLEX).

Intel Labs — Systems and Software Research

*QOther brands and names are the property of their respective owners.

'''

ARMCI-MPI

Goal: Implement the ARMCI interface on top of MPI RMA
(one-sided) features.

Challenge: MPI-2 one-sided was not a good match for
ARMCI. In particular, atomics were missing.

Nonetheless, Jim Dinan and coworkers implemented
ARMCI over MPI-2, which was called ARMCI-MPI.

We (Jim, Pavan, Jeff, etc.) helped fix one-sided in MPI-3.

http://wiki.mpich.org/armci-mpi/index.php/Main_Page

Intel Labs — Systems and Software Research

*Other brands and names are the property of their respective owners.

'''

ARMCI-MPI Design

- ARMCI memory management routines mapping to
MPI windows, which is tedious.

« ARMCI communication routines mapped to peer
routines in MPI-3, including atomics (RMW, CAS).

- Noncontiguous data uses MPI datatypes or
multiple injection.

 MPI-3 allows us to match ARMCI’s location
consistency (ordering) and direct local access
semantics.

* Nonblocking support impossible using MPI-2, now
well-optimized in ARMCI-MPI using MPI-3.

Intel Labs — Systems and Software Research

*QOther brands and names are the property of their respective owners. 58

e
Zorie e

Portability, Scalability and Stability

- NWChem scaled to at least 38K processes of
NERSC Edison.

« GTFOCK (IPDPS13 Best Paper) scaled to more
than 8000 nodes of Tianhe-2.

* Running near the memory limit on InfiniBand*,
which is not possible without ARMCI-MPI.

- Zero ARMCI-related failures except related to
InfiniBand*, all of which are trivially solved with
MVAPICH2* environment variables.

» Supports late-model MPICH* and derivatives
(MVAPICH2*, Cray* MPI, etc.) as well as Open
MPI*,

Intel Labs — Systems and Software Research

*QOther brands and names are the property of their respective owners. 58

Summary

- NWChem supports Intel® Xeon PHI™ processor in
HPC-oriented CCSD(T) module using portable
directives. Work in progress for other methods.

« Intel® Xeon PHI™ processor optimizations pay off
on Xeon and other CPU platforms: ditch the
offload, keep the OpenMP* and SIMD.

- ARMCI-MPI3 provides portability, stability and
scalability on essentially all HPC platforms.

Intel Labs — Systems and Software Research

*Other brands and names are the property of their respective owners. —=SSSSS

