

Large Scale Engineering Simulations on

Multicore and Heterogeneous Architectures
using the Uintah computational Frameworks

Martin Berzins

Thanks to DOE ASCI (97-10), NSF , DOE NETL+NNSA ARL
NSF , INCITE, XSEDE, James, Carter and Dan

www.uintah.utah.edu

1. Background and motivation
2. Uintah Software and Multicore Scalability
3. Runtime Systems for Heterogeneous Architectures
4. Portability for future Architectures Using DSLs(#) and Kokkos (*)
5. Conclusions

#slides from James Sutherland, * slides from Carter Edwards and Dan Sunderland

* Now at Google

Software team: DSL team lead
 Qingyu Meng* John Schmidt, Alan Humphrey, Justin Luitjens*, James Sutherland

Extreme Scale Research and teams in Utah

Energetic Materials: Chuck Wight, Jacqueline Beckvermit, Joseph Peterson,
 Todd Harman, Qingyu Meng NSF PetaApps 2009-2014 $1M, P.I. MB

PSAAP Clean Coal Boilers: Phil Smith (P.I.), Jeremy Thornock James Sutherland
etc Alan Humphrey John Schmidt DOE NNSA 2013-2018 $16M (MB CS lead)
Electronic Materials by Design: MB (PI) Dmitry Bedrov, Mike Kirby, Justin
Hooper, Alan Humphrey Chris Gritton, + ARL TEAM 2011-2016 $12M

* Now at NVIDIA

Machines: Titan, Stampede, Mira, Vulcan, Blue Waters, local linux, local linux/GPU, MIC

2013 Titan, Blue Gene Q - 2 Petaflops per MegaWatt
300K cpus 5M gpu cores

202X Exascale “goal” requires 50 Petaflops per
Megawatt, 1B cores - not possible with existing
hardware/software approaches.

Many more cores (majority on “accelerators”), variable
Power consumption. Communication delays.
Many more component failures.

 HPC software now has to take into account
considerable uncertainty in architectures
and run on accelerator-based machines that
will be much more energy efficient.
Adaptive software needed

The Exascale challenge for Future Software?

Exascale also means Petascale in a cabinet

Harrod SC12: “today’s bulk synchronous (BSP),
distributed memory, execution model is
approaching an efficiency, scalability, and power
wall.”

Sarkar et al. “Exascale programming will require
prioritization of critical-path and non-critical path
tasks, adaptive directed acyclic graph scheduling of
critical-path tasks, and adaptive rebalancing of all
tasks…...”

“ DAG Task-based programming has always been a
bad idea. It was a bad idea when it was introduced
and it is a bad idea now “ Parallel Processing Award
Winner

The Exascale challenge for Future Software?

Compute

Communicate

Compute

Uintah(X) Architecture Decomposition
The problem specs for some components have not changed as we have
gone from 600 to 600K cores it is the Runtime System that changed

 Application Specification via
ICE MPM ARCHES or
NEBO/WASATCH DSL

Abstract task-graph program
that executes on:

Runtime System with:
asynchronous out-of-order
execution, work stealing

 Overlap communication &
computation

Tasks running on cores and
accelerators

Scalable I/O via Visus PIDX

Simulation
Controller

Scheduler

Load
Balancer

Runtime System

ARCHES

NEBO
WASATCH

PIDX VisIT

MPM
ICE

 UQ DRIVERS

ICE is a cell-centered finite volume
method for Navier Stokes equations

MPM is a novel
method that uses
particles and nodes
Exchange data with
ICE, not just boundary
condition

• Structured Grid Variable (for Flows) are Cell
Centered Nodes, Face Centered Nodes.

• Unstructured Points (for Solids) are Particles

Uintah Patch and Variables

ARCHES is a combustion code using several
different radiation models and linear solvers

Uintah:MD based on Lucretius is a new molecular dynamics component

Uintah DAG :Directed Acyclic
(Task) Graph-Based
Computational Framework

Each task defines its computation with required
inputs and outputs

Uintah uses this information to create a task graph

of computation (nodes) + communication
(along edges)

Tasks do not explicitly define communications but

only what inputs they need from a data
warehouse and which tasks need to execute
before each other.

Communication is overlapped with computation

Taskgraph is executed adaptively and sometimes

out of order

Task
Compile

Run
Time
(each

timestep)

xml

Parallel I/O

UINTAH ARCHITECTURE

Calculate Residuals
Solve Equations

RUNTIME
SYSTEM

Visus PIDX
VisIt

ARCHES or WASATCH/NEBO

The nodal task soup

Task Graph Structure on a Multicore Node with multiple patches

This is not a single graph. Multiscale and
Multi-Physics merely add flavor to the “soup”.
There are many adaptive strategies and tricks
that are used in the execution of this graph
soup.

halos halos external
halos

external
halos

Thread/MPI Scheduler (De-centralized)

• One MPI Process per Multicore node
• All threads directly pull tasks from task queues execute tasks and

process MPI sends/receives
• Tasks for one patch may run on different cores
• One data warehouse and task queue per multicore node
• Lock-free data warehouse enables all cores to access memory

quickly via atomic operations

Core runs tasks and checks
queues

N
etw

ork

Data
Warehouse

(variables
directory)

PUT

GET

Core runs tasks and checks
queues

Core runs tasks and checks
queues

completed task

Task Queues
New tasks

completed task

Threads

Shared
Data

Ready task

sends

receives

Task
Graph

PUT

GET

MPI

Scalability is at least partially achieved by not
executing tasks in order e.g. AMR fluid-structure
interaction

Straight line represents given order of tasks Green X shows
when a task is actually executed.
Above the line means late execution while below the line means
early execution took place. More “late” tasks than “early” ones
as e.g.
TASKS: 1 2 3 4 5 1 4 2 3 5

Early Late execution

Deflagration wave moves at
~400m/s not all explosive
consumed. Detonation wave
moves 8500m/s all explosive
consumed.

NSF funded modeling of
Spanish Fork Accident 8/10/05
Speeding truck with 8000
explosive boosters each
with 2.5-5.5 lbs of explosive
overturned and caught fire
Experimental evidence for
a transition from
deflagration to detonation?

2013 Incite 200m cpu hrs

Spanish Fork
Accident

500K mesh patches
1.3 Billion mesh cells
 7.8 Billion particles

At every stage when we move
to the next generation of problems
Some of the algorithms and data
structures need to be replaced .

Scalability at one level is no certain
Indicator fro problems or machines
An order of magnitude larger

MPM AMR ICE
Strong Scaling

*

Complex fluid-structure interaction problem
with adaptive mesh refinement, see SC13/14 paper
NSF funding.

Resolution B
29 Billion particles
4 Billion mesh cells
1.2 Million mesh
patches

Mira DOE BG/Q
768K cores
Blue Waters Cray
XE6/XK7 700K+
cores

An Exascale Design Problem - Alstom Clean Coal Boilers

For 350MWe boiler problem. LES resolution
needed: 1mm per side for each computational volume = 9x 1012 cells
This is one thousand times larger than the largest problems we solve
today.

Temperature field

Prof. Phil Smith Dr Jeremy Thornock ICSE

Linear Solves arises from Navier –Stokes Equations

2

. 0,

where is density, is velocity vector and is pressure

, where .

t
p

u

u
u F uu up F g
t

ν

ρ ρ

ρ
ρ ρ ρ

∂
+∇ =

∂

∂
= −∇ − ∇= ∇ + +

∂

2
2

2, where . pp R R F
t

∂
∇ = = ∇ +

∂

Arrive at pressure Poisson
equation to solve for p

Full model includes turbulence,
chemical reactions and radiation

Use Hype Solver distributed by LLNL
Many linear solvers inc. Preconditioned Conjugate
Gradients on regular mesh patches used
Multi-grid pre-conditioner used
Careful adaptive strategies needed to get scalability
CCGrid13 paper.

One radiation solve
Every 10 timesteps

Running Task

N
etw

ork

Host
Data

Warehouse

(variables
directory)

PUT

GET

Running Task

Running Task
completed task

Task Queues
New tasks

completed task Host
Threads

Host
Memory

Ready task

sends

receives

Task
Graph

PUT

GET

Unified Heterogeneous Scheduler (GPU or Phi symmetric)

Running Task D
evice

N
etw

ork

Device
Data

Warehouse

(variables
directory)

PUT

GET

Running Task

Running Task
completed task

Task Queues
New tasks

completed task

Device
Threads

Device
Memory

Ready task

receives

Task
Graph

PUT

GET

P
C

I-E

NEBO/Wasatch Example

1
(,) n

h ij i i
J T Y T h Jλ

=
= − ∇ −∑

Energy equation
.() . 0h

e eu J terms
t
ρ ρ∂

+∇ +∇ + =
∂

Enthalpy diffusive flux

1

(,) (,)
ns

T
i ij j j i j

j
J D T Y Y D T Y T

=

= − ∇ − ∇∑

Dependency
specification

Execution
order

Express complex pde functions as
DAG - automatically construct
algorithms from expressions

Define field operations needed to
execute tasks (fine grained vector
parallelism on the mesh)

User writes only field operations code .
Supports field & stencil operations
directly - no more loops!

Strongly typed fields ensure valid
operations at compile time. Allows a
variety of implementations to be tried
without modifying application code.

Scalability on a node - use Uintah
infrastructure to get scalability across
whole system

[Sutherland Earl Might]

Wasatch – Nebo Recent Milestones
• Wasatch is solving (nonreacting miniboiler~3-4x

speedup over the non-DSL approach.
• New Nebo backend for CPU resultied in 20-30%

speedup in the entire Wasatch code base.
• Much of the Wasatch code base is GPU-ready
• Arches plus SpatialOps & Nebo EDSL being scoped.

Good GPU scaling with (>32^3 per patch).
Loop fusion (heavy GPU kernels) needed e.g “coupled
source & diffusion”

Each Mira Run is scaled wrt the Titan Run at 256 cores
Note these times are not the same for different patch sizes.

2.2 Trillion
DOF

Weak Scalability of Hypre Code

Xeon Phi Execution Models

Uintah on Stampede: Host-only Model

 Using Hypre with a conjugate gradient solver
 Preconditioned with geometric multi-grid
 Red Black Gauss Seidel relaxation - each patch

Incompressible turbulent flow

 Uintah on Stampede: Offload Model
Use compiler directives (#pragma)

Offload target: #pragma offload target(mic:0)
OpenMP: #pragma omp parallel

Find copy in/out variables from task graph

Functions called in MIC must be defined with
__attribute__((target(mic)))

Hard for Uintah to use offload mode
Rewrite highly templated C++ methods with simple
C/C++ so they can be called on the Xeon Phi
Less effort than GPU port, but still significant work for
complex code such as Uintah with 800K lines of code.

 Uintah on Stampede: Symmetric Model
Xeon Phi directly calls MPI
Use Pthreads on both host CPU and Xeon Phi:

1 MPI process on host – 16 threads
1 MPI process on MIC – up to 120 threads
Same example as previously.

Multi MIC Cards (Symmetric
Model)

Xeon Phi card: 60 threads per
MPI process, 2 MPI processes

host CPU :16 threads per MPI
process, 1 MPI process

Issue: load imbalance - profiling
differently on host and Xeon Phi

DESIGNING FOR EXASCALE
Clear trend towards accelerators e.g. GPU but also Intel MIC – NSF
“Stampede” Balance factor = flops/bandwidth – high.PORTABILITY IS
THE KEY ISSUE:NEW CODE - use Wasatch to generate code for GPUs
and MICs .How do we handle the challenge of existing code?

 Standard C++, Not a language extension
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming

 Multidimensional Arrays, with a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
Choose layout to satisfy device-specific memory access pattern
 Layout changes are invisible to the user code

Kokkos: A Layered Collection of Libraries
See [Carter Edwards and Dan Sunderland]

Evaluate Performance Impact of Array Layout
[Edwards and Sunderland]

26

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats for pos
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

NVIDIA AMGX Linear Solvers on GPUs
Fast, scalable iterative gpu linear solvers for packages e.g.,
Flexible toolkit provides GPU accelerated Ax = b solver
Simple API for multiple apps domains.
Multiple GPUs (maybe thousands) with scaling

Key Features
Ruge-Steuben algebraic MG
Krylov methods: CG,
GMRES, BiCGStab,
Smoothers and Solvers:
Block- Jacobi, Gauss-Seidel,
incomplete LU,

Flexible composition system
MPI support OpenMP
support, Flexible and high
level C API,

Free for non-commercial use
Utah access via Utah CUDA COE.

Summary

• DAG abstraction important for achieving scaling
• Layered approach very important for not needing to

change applications code
• Scalability still requires much engineering of the

runtime system.
• Obvious applicability to new architectures
• DSL approach very important for the future
• Kokkos very important for legacy codes
• MIC /GPU development ongoing
• The approach used here shows promise for very large

core and MIC/GPU counts but using these
architectures and future versions of them is an
exciting challenge for our exascale problem. Future
systems have mix of Intel Phi, GPU, IBM, Arm etc etc ?

	�Large Scale Engineering Simulations on Multicore and Heterogeneous Architectures using the Uintah computational Frameworks�
	� �
	The Exascale challenge for Future Software?
	The Exascale challenge for Future Software?
	Slide Number 5
	Uintah Patch and Variables
	Slide Number 7
	
	Slide Number 9
	Thread/MPI Scheduler (De-centralized)
	Slide Number 11
	Slide Number 12
	Slide Number 13
	MPM AMR ICE Strong Scaling
	An Exascale Design Problem - Alstom Clean Coal Boilers
	Linear Solves arises from Navier –Stokes Equations
	Slide Number 17
	NEBO/Wasatch Example
	Wasatch – Nebo Recent Milestones
	Slide Number 20
	Xeon Phi Execution Models
	Uintah on Stampede: Host-only Model
	 Uintah on Stampede: Offload Model
	 Uintah on Stampede: Symmetric Model
	DESIGNING FOR EXASCALE
	Evaluate Performance Impact of Array Layout�[Edwards and Sunderland]
	NVIDIA AMGX Linear Solvers on GPUs
	Summary

