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Software team:                                                                                  DSL team lead 
   Qingyu Meng* John Schmidt,  Alan Humphrey, Justin Luitjens*,     James Sutherland 

Extreme Scale Research  and teams in Utah 

Energetic Materials:  Chuck Wight, Jacqueline Beckvermit, Joseph Peterson,  
            Todd Harman,  Qingyu Meng NSF PetaApps  2009-2014 $1M, P.I. MB  

PSAAP Clean Coal Boilers:   Phil Smith (P.I.), Jeremy Thornock James Sutherland  
etc Alan Humphrey John Schmidt  DOE NNSA 2013-2018 $16M (MB CS lead) 
Electronic Materials by Design:   MB (PI) Dmitry Bedrov, Mike Kirby, Justin                    
Hooper, Alan Humphrey  Chris Gritton,   +  ARL TEAM 2011-2016 $12M 

* Now at NVIDIA 

Machines: Titan, Stampede, Mira,  Vulcan, Blue Waters,  local linux,  local linux/GPU, MIC    



2013 Titan,  Blue Gene Q -  2 Petaflops per  MegaWatt  
300K cpus 5M gpu cores 
 
202X Exascale “goal” requires 50 Petaflops per 
Megawatt, 1B cores - not possible with existing 
hardware/software approaches. 
 
Many more cores (majority on “accelerators”), variable 
Power consumption. Communication delays. 
Many more component failures.  
 
 HPC software now has to take into account 
considerable uncertainty in architectures  
and run on accelerator-based machines that 
will be much more energy efficient. 
Adaptive software needed         

The Exascale challenge for Future Software?  

Exascale also means Petascale  in a cabinet  



Harrod SC12: “today’s bulk synchronous (BSP), 
distributed memory, execution  model  is 
approaching an efficiency, scalability, and power 
wall.”  
 
 
Sarkar et al. “Exascale programming will require 
prioritization of critical-path and non-critical path 
tasks, adaptive directed acyclic graph scheduling of 
critical-path tasks, and adaptive rebalancing of all 
tasks…...” 
 
 
“ DAG Task-based programming has always been a 
bad idea. It was a bad idea when it was introduced 
and it is a bad idea now “ Parallel Processing Award 
Winner 
 
 
 

The Exascale challenge for Future Software?  

Compute 
----------------- 
Communicate 
----------------- 
Compute  



Uintah(X) Architecture Decomposition 
The problem specs for some components have not changed as we have 
gone from 600 to 600K cores it is the Runtime System that changed   

 Application Specification via 
ICE MPM ARCHES or 
NEBO/WASATCH DSL  

Abstract task-graph program 
that executes on: 

Runtime System with: 
asynchronous out-of-order 
execution,  work stealing 

 Overlap communication & 
computation 

Tasks running on cores and 
accelerators 

 
Scalable I/O via Visus PIDX 
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    UQ DRIVERS 



ICE is a cell-centered finite volume 
method for Navier Stokes equations 
 

MPM is a novel 
method that uses 
particles and nodes 
Exchange data with 
ICE, not just boundary 
condition 

• Structured Grid Variable (for Flows) are Cell 
Centered Nodes, Face Centered Nodes. 

• Unstructured Points (for Solids) are Particles 
 

Uintah Patch and Variables 

ARCHES is a combustion code using several  
different  radiation models and linear  solvers 
 
Uintah:MD  based on Lucretius is a new molecular dynamics component 



Uintah DAG :Directed Acyclic 
(Task) Graph-Based 
Computational Framework  

Each task defines its computation with required 
inputs and outputs 

 
Uintah uses this information to create a task graph 

of computation (nodes) + communication 
(along edges) 

 
Tasks do not explicitly define communications but 

only what inputs they need from a data 
warehouse and which tasks need to execute 
before each other.  

Communication is overlapped with computation 
 
Taskgraph is executed adaptively and sometimes 

out of order 
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The nodal task soup 

Task Graph Structure on a Multicore Node with multiple patches  

This is not a single graph. Multiscale and 
Multi-Physics merely add flavor to the “soup”. 
There are many adaptive strategies and tricks 
that are used in the execution of  this graph 
soup. 

halos halos external 
halos 

external 
halos 



Thread/MPI Scheduler (De-centralized) 

• One MPI Process per Multicore node 
• All threads directly pull tasks from task queues execute tasks and 

process MPI sends/receives 
• Tasks for one patch may run on different cores 
• One data warehouse and task queue per multicore node 
• Lock-free data warehouse enables all cores to access memory 

quickly via atomic operations 
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Scalability is at least partially  achieved by not 
executing tasks in order e.g. AMR fluid-structure 
interaction 

Straight line represents given order of tasks   Green X   shows 
when a task  is actually executed.    
Above the line means late  execution while below the line means 
early execution took place.  More “late” tasks than “early” ones 
as e.g. 
TASKS: 1 2 3 4 5                   1  4   2  3 5 

Early  Late execution  



Deflagration wave moves at 
~400m/s  not  all explosive 
consumed. Detonation  wave 
moves 8500m/s all explosive 
consumed. 

NSF funded modeling  of  
Spanish Fork Accident 8/10/05 
Speeding truck with 8000 
explosive boosters each 
with 2.5-5.5 lbs of explosive 
overturned and caught fire 
Experimental evidence for   
a transition from 
deflagration to detonation? 
   
 

2013 Incite 200m cpu hrs 



Spanish Fork 
Accident 

500K mesh patches 
1.3 Billion mesh cells 
 7.8 Billion particles 

At every stage when we move 
to the next generation of problems  
Some of the algorithms and data 
structures need to be replaced .  
 
Scalability at one level is no certain  
Indicator fro problems or machines  
An order of magnitude larger 



MPM AMR ICE 
Strong Scaling  

* 

Complex fluid-structure interaction problem 
with adaptive mesh refinement, see SC13/14 paper 
NSF funding.  

Resolution B  
29 Billion particles 
4 Billion mesh cells 
1.2 Million mesh 
patches 

Mira DOE BG/Q 
768K cores 
Blue Waters Cray 
XE6/XK7 700K+ 
cores 



An Exascale Design Problem - Alstom Clean Coal Boilers  

For 350MWe boiler problem. LES resolution  
needed: 1mm per side for each computational volume = 9x 1012  cells 
This is one thousand times larger than the largest problems we solve 
today. 

Temperature field  

Prof. Phil Smith Dr Jeremy Thornock  ICSE  



Linear Solves arises from Navier –Stokes Equations 
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Arrive at pressure Poisson 
equation to solve for p 

Full model includes turbulence, 
chemical reactions  and radiation 

Use Hype Solver distributed by LLNL 
Many linear solvers inc.  Preconditioned Conjugate 
Gradients on regular mesh patches used 
Multi-grid pre-conditioner used 
Careful adaptive strategies needed to get scalability 
CCGrid13 paper.  

One radiation solve 
Every 10 timesteps 
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NEBO/Wasatch Example  
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Dependency 
specification 

Execution 
order 

Express complex pde functions as 
DAG - automatically construct 
algorithms from expressions 

Define field operations needed to 
execute tasks (fine grained vector 
parallelism on the mesh) 

User writes only field operations code . 
Supports field & stencil operations 
directly - no more loops!  

Strongly typed fields ensure valid 
operations at compile time. Allows a 
variety of implementations to be tried 
without modifying application code. 

Scalability on a node - use Uintah 
infrastructure to get scalability across 
whole system 

[Sutherland Earl Might] 



Wasatch – Nebo Recent Milestones 
• Wasatch is solving (nonreacting  miniboiler~3-4x 

speedup over the non-DSL approach. 
• New Nebo backend for CPU resultied in 20-30% 

speedup in the entire Wasatch code base. 
• Much of the Wasatch code base is GPU-ready 
• Arches plus SpatialOps & Nebo EDSL being scoped. 

Good GPU scaling  with (>32^3 per patch). 
Loop fusion (heavy GPU kernels) needed e.g “coupled 
source & diffusion”  



Each Mira Run is scaled wrt the Titan Run at 256 cores 
Note these times are not the same for different patch sizes.  

2.2 Trillion 
DOF  

Weak Scalability of Hypre Code 



Xeon Phi Execution Models  

 



Uintah on Stampede: Host-only Model 

 Using Hypre with a conjugate gradient solver  
 Preconditioned with geometric multi-grid 
 Red Black Gauss Seidel relaxation - each patch 

Incompressible turbulent flow 



 Uintah on Stampede: Offload Model 
Use compiler directives (#pragma) 

Offload target: #pragma offload target(mic:0) 
OpenMP: #pragma omp parallel 

 

Find copy in/out variables from task graph 
 
 

Functions called in MIC must be defined with  
__attribute__((target(mic)))  
 
 

Hard for Uintah to use offload mode  
Rewrite highly templated C++ methods with simple 
C/C++ so they can be called on the Xeon Phi 
Less effort than GPU port, but still significant work for 
complex code such as Uintah with 800K lines of code. 

 



 Uintah on Stampede: Symmetric Model 
Xeon Phi directly calls MPI 
Use Pthreads on both host CPU and Xeon Phi: 

1 MPI process on host – 16 threads 
1 MPI process on MIC – up to 120 threads 
Same example as previously. 
       
  

 
 
 
 
 
 

Multi MIC Cards (Symmetric 
Model)  
 
Xeon Phi card: 60 threads per 
MPI process,   2 MPI processes 
 
host CPU :16 threads per MPI 
process,   1 MPI process 
 
Issue:  load imbalance -  profiling 
differently on host and Xeon Phi 
 



DESIGNING FOR EXASCALE 
Clear trend towards accelerators e.g. GPU but also Intel MIC – NSF 
“Stampede” Balance factor = flops/bandwidth – high.PORTABILITY IS 
THE KEY ISSUE:NEW CODE  - use Wasatch to generate code for GPUs 
and MICs .How do we handle the challenge of existing code?  
 

 Standard C++, Not a language extension 
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ... 
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 

 Uses C++ template meta-programming 

 Multidimensional Arrays, with a twist 
 Layout mapping: multi-index (i,j,k,...) ↔ memory location 
Choose layout to satisfy device-specific memory access pattern 
 Layout changes are invisible to the user code 

Kokkos: A Layered Collection of Libraries 
See [Carter Edwards and Dan Sunderland] 



Evaluate Performance Impact of Array Layout 
[Edwards and Sunderland] 

26 

 Molecular dynamics computational kernel in miniMD 
 Simple Lennard Jones force model: 
 Atom neighbor list to avoid N2 computations 
 

 

 

 Test Problem 
 864k atoms, ~77 neighbors 
 2D neighbor array 
 Different layouts CPU vs GPU 
 Random read ‘pos’ through 

GPU texture cache  
 Large performance loss 

with wrong array layout 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats for pos 
  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 
} 
f(i) = f_i; 
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NVIDIA AMGX Linear Solvers on GPUs 
Fast, scalable iterative gpu linear solvers for packages e.g.,  
Flexible toolkit provides GPU accelerated Ax = b solver 
Simple API for multiple apps domains.  
Multiple  GPUs (maybe thousands)  with scaling 
 

Key Features 
Ruge-Steuben algebraic MG 
Krylov methods: CG, 
GMRES, BiCGStab, 
Smoothers and Solvers: 
Block- Jacobi, Gauss-Seidel, 
incomplete LU,  
 
Flexible composition system 
MPI support OpenMP 
support, Flexible and high 
level C  API,   
 

Free for non-commercial  use 
Utah access  via Utah CUDA  COE. 



Summary 

• DAG abstraction important for achieving scaling 
• Layered approach very important for not needing to 

change applications code  
• Scalability still requires  much engineering of the 

runtime system. 
• Obvious applicability to new architectures 
• DSL approach very important for the  future 
• Kokkos very important for legacy codes 
• MIC /GPU development ongoing 
• The approach used here shows promise for very large 

core and MIC/GPU counts but using these 
architectures  and future versions of them is  an 
exciting challenge for our exascale problem. Future 
systems have mix of Intel Phi, GPU, IBM, Arm etc etc ? 
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