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Field solve time %

Apphca'n()n Sca“ng - GS2: Flux-tube gyrokinetic code

- Initial value code, solves the
gyrokinetic equations for perturbed
distribution functions together with

Maxwell’'s equations for the
turbulent electric and magnetic
fields

- Linear (fully implicit) and Non-linear
(dealiased pseudo-specitral) terms

- Different species of charged
particles
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Fields calculation

- Domain decomposition optimised the linear layout
- Splits spatial domain across processes
- Requires some communication for global values

- Non-linear and collisions require different layouts
- Non-linear involves FFT transformation

- Fields calculation requires reverse of linear domain layout
- Sections of the spatial domains need to be combined
- Velocity space local

- Each part of the time step requires some communications
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Velocity space integration

- Velocity space integration in fields

- Currently calculation is done as a loop as follows:
do iglo = g_lo%llim, g _lo%ulim
do naky
do nx
Perform calculation
end do
end do
end do
MPI_Allreduce to get final result

- This has already been optimised

- Use of sub-communicators to restrict all reduce to processors that
share x-y points

- Aim to remove the all reduce completely

- Perform a data redistribute before integration ‘ epCC
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Velocity space integration

- Replace current all reduce with redistribute that does data
franspose

- Send all data from single x-y point to a given processor

- Perform the integration for that x-y point only on that processor
- Implies some load imbalance at scale

- X"y is smaller than nproc for large core counts

- Some processes with zero work for this step
- Create new layout and redistribute object

- Decompose x-y points to processes

- Map from linear to fields space

- Perform the velocity space integration
- Two different decomposition methods

- Basic rank based assignment
- First m processes get a gf_lo point
- Distributed assignment
- Try to spread gf lo points out amongst processes

epcc
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Performance — Advanced Time
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Advanced times
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Initialisation times
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Summary

- Decomposition data for fields calculation to make
computation local improves performance
- up to 2x performance improvement (depending on number of fields,
process count and linear layout)
- The largest performance improvement is for 3 fields and
large process counts

- Domain decomposition is inherently load imbalanced
- A subset of processes have no work to do

- This subset grows as simulations are strong scaled

- I.e. for the simulations shown here, there are only 1008 field points, so
at 4032 processes, 3024 (75%) will be idle during the fields calculation

- Communication patterns changed
- Reduces collective communications

- Increases point to point communications ‘epCC‘ _




Full details and future work

- Future work

- Currently the mapping of the fields decomposition to processes is
simplistic:
- first N MPI ranks get the field points

- This could be optimised by choosing a mapping that reduces data
movement from processes

- i.e. considers current data locality

- This could be optimised by choosing a mapping that reduces data
movement between nodes

- i.e. optimise for fast on-node communiations where possible
- Technical report:
- http://www.archer.ac.uk/community/eCSE/eCSE02-08/e CSE02-08.php
- Funded by EPSRC ARCHER eCSE program

- Funded by Intel IPCC collaboration with EPCC
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