OPTIMISED DATA
DECOMPOSITION FOR
REDUCED COMMUNICATION
COSTS

Manos Farsarakis
Adrian Jackson, EPCC, a.jackson@epcc.ed.ac.uk, @adrianjnpc

David Dickinson, York
(:(: 3 OE%’A
‘ p) };‘ -
NORY
ety

Colin Roach, CCFE

Field solve time %

Apphca'n()n Sca“ng - GS2: Flux-tube gyrokinetic code

- Initial value code, solves the
gyrokinetic equations for perturbed
distribution functions together with

Maxwell’'s equations for the
turbulent electric and magnetic
fields

- Linear (fully implicit) and Non-linear
(dealiased pseudo-specitral) terms

- Different species of charged
particles

100

(=1
t=]

30 300 3000
Nproc

100

- The optimised code \

efficiency is ~80% for .-
the collisional problem \kf
at 1024 cores, and 50% 1

at 4096 cores I B m\\

0.1

Time (minutes)

Nproc

-
Fields calculation

- Domain decomposition optimised the linear layout
- Splits spatial domain across processes
- Requires some communication for global values

- Non-linear and collisions require different layouts
- Non-linear involves FFT transformation

- Fields calculation requires reverse of linear domain layout
- Sections of the spatial domains need to be combined
- Velocity space local

- Each part of the time step requires some communications

epCcc

e
Velocity space integration

- Velocity space integration in fields

- Currently calculation is done as a loop as follows:
do iglo = g_lo%llim, g _lo%ulim
do naky
do nx
Perform calculation
end do
end do
end do
MPI_Allreduce to get final result

- This has already been optimised

- Use of sub-communicators to restrict all reduce to processors that
share x-y points

- Aim to remove the all reduce completely

- Perform a data redistribute before integration ‘ epCC

N~
S 7
o]

<

e
Velocity space integration

- Replace current all reduce with redistribute that does data
franspose

- Send all data from single x-y point to a given processor

- Perform the integration for that x-y point only on that processor
- Implies some load imbalance at scale

- X"y is smaller than nproc for large core counts

- Some processes with zero work for this step
- Create new layout and redistribute object

- Decompose x-y points to processes

- Map from linear to fields space

- Perform the velocity space integration
- Two different decomposition methods

- Basic rank based assignment
- First m processes get a gf_lo point
- Distributed assignment
- Try to spread gf lo points out amongst processes

epcc

Performance — Advanced Time

XYLES

10
»
[¢]
)
>
c
é 1 P Cores
\GJ’ 400 —7000—
kS —o
|_

0.1

—eo—original 1 field —e—gf1field —e—original2fields —e—gf2fields —e—original3fields —e—gf 3 fields

epcc

Performance — Advanced Time

YXLES

10

\ Cores

+

I

Time (minutes)
r

0.1

—eo—original 1 field —e—gf1field —e—original2fields —e—gf2fields —@—original3fields —e—gf 3 fields

epce

Performance — Advanced Time

LEXYS

10

Cores

B
o

4000

\ —

Time (minutes)

il

0.1

—e—original 1 field —e—gf1field —®—original2fields —e—gf2fields —®—original3fields —&—gf 3 fields

epcC

-
Advanced times

. LEXYS VXLES

=
o

N
S

Am —o

B

—o—
0 \
CoresS

Time (minutes)
Time (minutes)

0.1

=
N

—e—original 1 field —e—gf 1 field —e—original 1 field —e—gf 1 field

—e—original 2 fields ~ —e—gf 2 fields —e—original 2 fields —e—gf 2 fields

original 3 fields of 3 fields —e—original 3 fields —o—gf 3 fields

XYLES

-
o

Time (minutes)

o
N

—e—original 1 field —e—gf1 field ‘ (a pCC

—o—original 2 fields —e—gf 2 fields
—&—original 3 fields —e—gf 3 fields

Initialisation times

XYLES

100

YXLES

o

[y
o

Time (minutes)
o Time (minutes) =

o

$— —o -

A 4000
‘\‘_‘\‘: 400 O— 4000
0.1 1
—e—original 1 field —e—gf 1field —e—original 1 field —eo—gf 1 field
—e—original 2 fields —o—gf 2 fields —e—original 2 fields —e—gf 2 fields
*-original 3 fields *—gf 3 fields —e—original 3 fields —e—gf 3 fields
LEXYS
10
E
) o~—
et —e
-+ o—
>
=
— - 000 -—0
s r . Cores 4
e = \H —0
i: O

0.1

—e—original 1 field —e—gf 1 field
—o—original 2 fields —e—gf 2 fields

—o—original 3 fields —o—gf 3 fields

Summary

- Decomposition data for fields calculation to make
computation local improves performance
- up to 2x performance improvement (depending on number of fields,
process count and linear layout)
- The largest performance improvement is for 3 fields and
large process counts

- Domain decomposition is inherently load imbalanced
- A subset of processes have no work to do

- This subset grows as simulations are strong scaled

- I.e. for the simulations shown here, there are only 1008 field points, so
at 4032 processes, 3024 (75%) will be idle during the fields calculation

- Communication patterns changed
- Reduces collective communications

- Increases point to point communications ‘epCC‘ _

Full details and future work

- Future work

- Currently the mapping of the fields decomposition to processes is
simplistic:
- first N MPI ranks get the field points

- This could be optimised by choosing a mapping that reduces data
movement from processes

- i.e. considers current data locality

- This could be optimised by choosing a mapping that reduces data
movement between nodes

- i.e. optimise for fast on-node communiations where possible
- Technical report:
- http://www.archer.ac.uk/community/eCSE/eCSE02-08/e CSE02-08.php
- Funded by EPSRC ARCHER eCSE program

- Funded by Intel IPCC collaboration with EPCC

epcc

