
OPTIMISED DATA 
DECOMPOSITION FOR 
REDUCED COMMUNICATION 

COSTS
Manos Farsarakis
Adrian Jackson, EPCC, a.jackson@epcc.ed.ac.uk, @adrianjhpc
David Dickinson, York
Colin Roach, CCFE



Application scaling

• The optimised code 
efficiency is ~80% for 
the collisional problem 
at 1024 cores, and 50% 
at 4096 cores 

• GS2: Flux-tube gyrokinetic code

• Initial value code, solves the 

gyrokinetic equations for perturbed 

distribution functions together with 

Maxwell’s equations for the 

turbulent electric and magnetic 

fields

• Linear (fully implicit) and Non-linear 

(dealiased pseudo-spectral) terms

• Different species of charged 

particles



Fields calculation

• Domain decomposition optimised the linear layout

• Splits spatial domain across processes

• Requires some communication for global values

• Non-linear and collisions require different layouts

• Non-linear involves FFT transformation

• Fields calculation requires reverse of linear domain layout

• Sections of the spatial domains need to be combined

• Velocity space local

• Each part of the time step requires some communications



Velocity space integration

• Velocity space integration in fields

• Currently calculation is done as a loop as follows:
do iglo = g_lo%llim, g_lo%ulim

do naky

do nx

Perform calculation

end do

end do

end do

MPI_Allreduce to get final result

• This has already been optimised

• Use of sub-communicators to restrict all reduce to processors that 
share x-y points

• Aim to remove the all reduce completely

• Perform a data redistribute before integration



Velocity space integration

• Replace current all reduce with redistribute that does data 
transpose
• Send all data from single x-y point to a given processor

• Perform the integration for that x-y point only on that processor

• Implies some load imbalance at scale
• x*y is smaller than nproc for large core counts

• Some processes with zero work for this step 

• Create new layout and redistribute object
• Decompose x-y points to processes

• Map from linear to fields space

• Perform the velocity space integration

• Two different decomposition methods
• Basic rank based assignment

• First m processes get a gf_lo point

• Distributed assignment
• Try to spread gf_lo points out amongst processes



Performance – Advanced Time

0.1

1

10

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

XYLES

original 1 field gf 1 field original 2 fields gf 2 fields original 3 fields gf 3 fields



Performance – Advanced Time

0.1

1

10

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

YXLES

original 1 field gf 1 field original 2 fields gf 2 fields original 3 fields gf 3 fields



Performance – Advanced Time

0.1

1

10

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

LEXYS

original 1 field gf 1 field original 2 fields gf 2 fields original 3 fields gf 3 fields



Advanced times

0.1

1

10

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

LEXYS

original 1 field gf 1 field

original 2 fields gf 2 fields

original 3 fields gf 3 fields

0.1

1

10

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

YXLES

original 1 field gf 1 field

original 2 fields gf 2 fields

original 3 fields gf 3 fields

0.1

1

10

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

XYLES

original 1 field gf 1 field

original 2 fields gf 2 fields

original 3 fields gf 3 fields



Initialisation times

0.1

1

10

100

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

XYLES

original 1 field gf 1 field

original 2 fields gf 2 fields

original 3 fields gf 3 fields

0.1

1

10

100

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

YXLES

original 1 field gf 1 field

original 2 fields gf 2 fields

original 3 fields gf 3 fields

0.1

1

10

400 4000

T
im

e
 (

m
in

u
te

s)

Cores

LEXYS

original 1 field gf 1 field

original 2 fields gf 2 fields

original 3 fields gf 3 fields



Summary

• Decomposition data for fields calculation to make 
computation local improves performance
• up to 2x performance improvement (depending on number of fields, 

process count and linear layout)

• The largest performance improvement is for 3 fields and 
large process counts

• Domain decomposition is inherently load imbalanced
• A subset of processes have no work to do

• This subset grows as simulations are strong scaled

• i.e. for the simulations shown here, there are only 1008 field points, so 
at 4032 processes, 3024 (75%) will be idle during the fields calculation

• Communication patterns changed
• Reduces collective communications

• Increases point to point communications



Full details and future work
• Future work

• Currently the mapping of the fields decomposition to processes is 

simplistic:

• first N MPI ranks get the field points

• This could be optimised by choosing a mapping that reduces data 

movement from processes

• i.e. considers current data locality

• This could be optimised by choosing a mapping that reduces data 

movement between nodes

• i.e. optimise for fast on-node communiations where possible

• Technical report:

• http://www.archer.ac.uk/community/eCSE/eCSE02-08/eCSE02-08.php

• Funded by EPSRC ARCHER eCSE program

• Funded by Intel IPCC collaboration with EPCC


