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Monte Carlo Simulation: Why

Understand how detector design affect 
measurements and physics
Correct for inefficiencies, inaccuracies, 
unknowns.
Theory models to compare data against.

Detailed simulation of subatomic particles is 
essential for data analysis, detector design
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A good simulation demonstrates that we understand the detectors and the 
physics we are studying
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The problem
Complex physics and geometry modeling
Heavy computation requirements
>50% of WLCG power for simulations
Current code cannot cope (HL-LHC in 2025)
Currently available solutions detector 
dependent
Focus on EM Calorimeter
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200 Computing centers in 20 countries:     > 
600k cores

@CERN (20% WLCG): 65k cores; 30PB 
disk + >35PB tape storage 

Campana,	CHEP	2016

ATLAS	experiment:
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Classical Monte Carlo simulation

1.	Calculate	step	particle	
could	travel	before	doing	a	
PHYSICS	interaction

2a.	Chek if	step	is	within	
volume	
boundaries(GEOMETRY)

3.	Propagate	with	selected	
step

5.	PHYSICS	
process

4.	Repeat	2,3	until	reaching	volume	
boundary.	
Restart	from	1

Repeat	stages 1	to	5	:

- For	every	particle	trajectory	step
- For	every	primary	particle	
- For	every	secondary	particle

simplified	from	
A.	Gheata
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Deep Learning for fast simulation

Generic approach
Can encapsulate expensive computations 
Inference step is faster than algorithmic 
approach
Already parallelized and optimized for 
GPUs/HPCs. 
Industry building highly optimized 
software, hardware, and cloud services. 

Improved, efficient and accurate fast simulation
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Can we keep accuracy while doing things faster? 
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Requirements

Precise simulation results:
Detailed validation process

A fast inference step
Generic customizable tool 

Easy-to-use and easily extensible framework
Large hyper parameters scans and meta-optimisation:

Training time under control
Scalability
Possibility to work across platforms
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A DL engine for fast simulation

Start with time consuming detectors
Reproduce particle showers in 
calorimeters

Train on detailed simulation
Test training on real data

Test different models
Generative Adversarial Networks

Embed training-inference cycle in 
simulation
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Intel
Parallel	
Computing	
Center		2017
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Can image-processing approaches be 
useful? 
Can we preserve accuracy while increasing 
speed? 
Can we sustain the increase in detector 
complexity (future highly-granular 
calorimeters)? 

How generic is this approach?
Can we “adjust” architecture to fit a 
large class of detectors? 
What resources are needed?
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A plan in two steps

• A first proof of concept
• Understand performance and 

validate accuracy

• Prove generalisation is possible
• Understand and optimise

computing resources
• Reduce training time
• HPC friendly
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CLIC Calorimeter
Array of absorber material and silicon sensors
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Ispy visualisation

25 2525

Detector output is 
essentially a 3D image 

Pierini,	DS@HEP(*) http://cds.cern.ch/record/2254048#

CLIC is a CERN project for a linear accelerator of 
electrons and positrons to TeV energies
Associated electromagnetic calorimeter detector design(*)

Highly segmented (pixelized)
Segmentation is critical for particle identification and energy calibration.
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CLIC calorimeter data

Sparse.
Non-linear location-dependency
Dataset: 200.000 electrons depositing 
energy in the calorimeter
Energy range: 10-510GeV
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Generator G generates data from random noise
Discriminator D learns how to distinguish real data 
from generated data
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Simultaneously train two networks that compete and cooperate with each other: 

Generative adversarial networks
arXiv:1406.2661v1	

Image source:

The counterfeiter/detective case
Counterfeiter shows the Monalisa
Detective says it is fake and gives feedback 
Counterfeiter makes new Monalisa based on feedback
Iterate until detective is fooled

https://arxiv.org/pdf/1701.00160v1.pdf
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Network architectures

3D conditional GAN with 
two auxiliary regression 
tasks

Based on 3D 
convolution/deconvolutions 
to describe whole volume

13
Y
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Conditioning and auxiliary tasks

Condition training on several input variables (particle type, 
energy, incidence angle)

Auxiliary regression tasks assigned to the discriminator: 
primary particle energy, deposited energy, incidence angle

Loss is linear combination of 3 terms:

Combined cross entropy  (real/fake) 

Mean absolute percentage error for regression tasks
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Easily generalisable to multi-class approach (or multi-discriminator 
approach): angle..

Real/fake probability

Epochs
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RESULTS validation
Comparison to Monte Carlo data
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Geant4
GAN	generated

GAN	generated	electron	
shower

Y	moment	(width)

Average	shower	
section

Primary	particle	
energy
(100	GeV)

Single	cell	
response
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Generation speedup

Inference:
Classical Monte Carlo requires 17 s/shower 
3DGAN takes  7 ms/shower 
èspeedup factor > 2500!!

Using a trained model is very fast

Time	to	create	an	electron	shower

Method Machine Time/Shower
(msec)

Full	Simulation	
(geant4)

Intel	Xeon	
Platinum	8180 17000

3D	GAN
(batch	size	128)

Intel	Xeon	
Platinum	8180 7
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Use keras 2.13 /Tensorflow 1.9 
(Intel optimised)

• AVX512 –FMA-XLA support
• Intel® MKL-DNN (with 3D 

convolution support)

Optimised multicore utilisation
• inter_op_paralellism_threads/intra_

op_paralellism threads

Horovod 0.13.4
• Synchronous SGD approach
• MPI_AllReduce

Distributed 
training

Run on TACC Stampede2 cluster:
• Dual socket Intel Xeon 8160
• 2x 24 cores per node, 192 GB RAM
• Intel® Omni-Path Architecture

Test several MPI scheduling
configurations

• 2,4, 8 processes per nodes. 
• Best machine efficiency with 4 

processes/node
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Training time optimisation

• 1 worker/node TF + Eigen (baseline)
• 1 worker/node TF + MKL-DNN
• 1 worker/node, TF+ MKL-DNN, 

optimised number of convolution filters
• 4 workers/node, TF+ MKL-DNN, 

optimised number of convolution filters
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Scaling results
Distributed training using data parallelism

94% scaling efficiency up to 128 nodes
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Some performance degradation 
Mostly in the low energy regions for 
large batchsize (4096)
Network optimised for the 100-200 
GeV central region
Applied warmup and scaling of 
initial learning rate
Further investigation ongoing

Physics performance at scale

Data
BatchSize=1000
BatchSize=4000
BatchSize=10000
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Conclusion & Plans

Distributed training process and optimisation to scale on clusters 
is critical

Allows meta-optimisation and hyperparameter scans in order to 
generalize to different detectors

Parallelizing training process and optimize scaling on clusters

Initial results are very promising
Reduced training time by x8 on single node

Linear scaling brings down training time to ~2min on 128 nodes

Keep working on the understanding / optmisation of physics 
performance at scale 

First results are very promising from physics perspective
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Questions?

Sofia.Vallecorsa@cern.ch

www.cern.ch/openlab


