
From CUDA to DPC++ and back to Nvidia GPUs... and FPGAs
A oneAPI case study with the tsunami simulation easyWave

Steffen Christgau, Marius Knaust
Supercomputing DepartmentZuse Institute Berlin

IXPUG Annual ConferenceOctober 13, 2020



Where to start with oneAPI?
• new exciting programming environment for different hardware architectures

for data parallel applications→ Data Parallel C++ (DPC++)expectation: have single code for different platforms (CPUs, GPUs, etc.)
• What to do with existing applications, e.g. written (solely) for CUDA?
• Use Compatibility Tool tomigrate a real code (not only vector addition)
• this talk: easyWave

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG’20 1 / 7



easyWave
• German Research Center for GeoSciences (GFZ)• open source tsunami simulation: arrival times and wave heights• originally written in C++ with classes for OpenMP and CUDA support• memory bound stencil kernels on dynamically growing compute domain

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG’20 2 / 7



Heading towards oneAPI
• straightforward migration process, assisted by Compatibility Tool (dpct)

whole project or selected files as input to dpctoutput is automatically migrated code→ still readable + maintainableonly CUDA-related parts touchedcomments added to mark (un)migrated code/migration issues
• convienient automatic migration

good starting point for further developmentremoves the burden of tedious boilerplate/syntax changes

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG’20 3 / 7



Migration Result
• source code

LOC increase by 5% (4470 vs 4674) due to migrated SYCL kernel launch code
kernels almost unmodified by Compatibility Tool

• Same code produces valid data on CPU, Intel GPUs, and FPGA.
• oneAPI performance evolution on DevCloud Coffee Lake Gen9.5 GT2 iGPU:

0 10 20 30 40 50

Beta 03
Beta 09
Beta 09*

47.1
38.7

25.5

compute time / s

Compute Domain: approx. 2000 x 1400 cells; 10 hours simulation time* self-made performance issue removed
Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG’20 4 / 7



Going back to Nvidia GPUs. . .
. . . using the migrated DPC++ code!• almost no adjustments required, except workgroup size• build with open source Intel LLVM w/ CUDA support (contribution by Codeplay)
• What about performance? Typical application run on Nvidia P100-SXM2-16GB:

0 500 1,000 1,500

CUDA Code
migrated DPC++ Code

1,705

1,766

compute time / ms

only 4% slower!

Compute Domain: approx. 2000 x 1400 cells; 10 hours simulation time

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG’20 5 / 7



... and further to FPGAs
• use migrated code again• build for FPGA using dpcpp compiler• run on actual Intel PAC / Stratix 10 SX

produced correct valuesbut computed domain too large→ atomics not working as expectedreduction-like code adjusted to use loop instead of atomics→ correct results
• What about performance?

0 100 200 300 400

initial migrated code

fixed window expansion
433

166

compute time / s

1.0x
2.6x

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG’20 6 / 7



Summary
• Assisted migration of real world CUDA code to DPC++ feasible.• Same DPC++ code can target different platforms (almost) without modifications.• Performance is on par with architecture-specific CUDA code.

Thanks for your attention!Questions?

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG’20 7 / 7


