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Where to start with oneAPI?
• new exciting programming environment for different hardware architectures

for data parallel applications→ Data Parallel C++ (DPC++)expectation: have single code for different platforms (CPUs, GPUs, etc.)
• What to do with existing applications, e.g. written (solely) for CUDA?
• Use Compatibility Tool tomigrate a real code (not only vector addition)
• this talk: easyWave
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easyWave
• German Research Center for GeoSciences (GFZ)• open source tsunami simulation: arrival times and wave heights• originally written in C++ with classes for OpenMP and CUDA support• memory bound stencil kernels on dynamically growing compute domain
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Heading towards oneAPI
• straightforward migration process, assisted by Compatibility Tool (dpct)

whole project or selected files as input to dpctoutput is automatically migrated code→ still readable + maintainableonly CUDA-related parts touchedcomments added to mark (un)migrated code/migration issues
• convienient automatic migration

good starting point for further developmentremoves the burden of tedious boilerplate/syntax changes

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG’20 3 / 7



Migration Result
• source code

LOC increase by 5% (4470 vs 4674) due to migrated SYCL kernel launch code
kernels almost unmodified by Compatibility Tool

• Same code produces valid data on CPU, Intel GPUs, and FPGA.
• oneAPI performance evolution on DevCloud Coffee Lake Gen9.5 GT2 iGPU:
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Going back to Nvidia GPUs. . .
. . . using the migrated DPC++ code!• almost no adjustments required, except workgroup size• build with open source Intel LLVM w/ CUDA support (contribution by Codeplay)
• What about performance? Typical application run on Nvidia P100-SXM2-16GB:
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only 4% slower!
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... and further to FPGAs
• use migrated code again• build for FPGA using dpcpp compiler• run on actual Intel PAC / Stratix 10 SX

produced correct valuesbut computed domain too large→ atomics not working as expectedreduction-like code adjusted to use loop instead of atomics→ correct results
• What about performance?
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Summary
• Assisted migration of real world CUDA code to DPC++ feasible.• Same DPC++ code can target different platforms (almost) without modifications.• Performance is on par with architecture-specific CUDA code.

Thanks for your attention!Questions?
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